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Our findings show that some O141 strains are 
capable of robust colonization. These strains encode 
at least 2 potential mechanisms, Tcp and T3SS2, 
that could enable intestinal colonization. Variable 
colonization among O141 strains could be explained 
by differential conservation of T3SS components/ 
effectors or other colonization factors. Deciphering 

the colonization requirements of different O141 iso-
lates will be a useful endeavor.

The factors that have limited V. cholerae O141 
from causing sustained cholera epidemics remain to 
be elucidated. It is possible that V. cholerae O141 is not 
as well adapted as V. cholerae O1 to the aquatic envi-
ronment, which is thought to be a key feature of the 
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Figure 4. Targeted analysis of the 
accessory genome of in vivo‒tested 
Vibrio cholerae O141 isolates. A) 
Genes encoding colonization factors. 
For each block of colonization factor, 
the absent genes are represented by 
the light color. B) Thin gray line after 
the reference is a standard circle line 
from the GView server (https://server.
gview.ca) delimiting the reference 
from analyzed samples. EPS, 
exopolysaccharide; VAS, virulence-
associated secretion.
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lifecycle of V. cholerae. Although we did not assess the 
aquatic fitness of the O141 serogroup, V. cholerae O141 
has been detected in environmental reservoirs, such 
as oysters, clams, and freshwater in lakes and rivers 
in the United States, suggesting an environmental 
defect is unlikely to fully explain the low frequency 
of these strains in the clinic (8,9). These discrepancies 
call for further genomic and experimental studies on 
environmental, as well as additional clinical V. choler-
ae O141 isolates. Additional techniques, such as mul-
tilocus sequence typing, could overcome challenges 
related to the identification of V. cholerae non–O1/
O139 serogroups.

Overall, V. cholerae O141 strains constitute a dis-
tinct phylogenetic clade that includes shared and 
unique genomic elements. In addition, we found that 
V. cholerae O141 clinical isolates showed marked vari-
ation in intestinal colonization capacity in the infant 
mouse model. These findings shed light on a little-
known V. cholerae serogroup associated with diar-
rheal illness.
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